Pubblicazioni scientifiche su riviste Internazionali
2
Stress ossidativo e Sport
Importance of oxidative stress evaluation from the view of Sport Medicine Eugenio Luigi Iorio, MD, PhD, and Najat Youssef, BD, RD.
- (1). In Humans (emotional)
stress initiates the so-called “fight or flight” response. i. e. a multifaceted reaction that involves the
neurological, the endocrine and the immune system, through the production of specific mediators like
adrenocorticotropic hormone, cortisol, adrenaline and cytokines (2).
At molecular level, the stress response implies also the activation of the so-called redox system that
triggers one-electron transfer reactions in which the “oxidant/oxidising” chemical specie extracts one
electron (as such or as hydrogen atom) from the “reductant/reducing“ specie (3, 4). Although the
concepts of “oxidising” and “reducing” are “relative” because the same chemical specie (e. g. iron ion)
Pubblicazioni Scientifiche di Najat Youssef
can act as oxidant (e. g. ferric ion) or reductant (e. g. ferrous ion) depending on its chemical structure
and/or its physical/chemical “environment” in this paper we will refer to such common “absolute”
definition of redox reactions (3).
The most biologically relevant oxidising species involved in stress response are (free) radicals (e. g.
hydroxyl radical, HO.) which have been defined as single or grouped atoms where there is one atom
showing in an external orbital one instead of two electrons (3). This latter feature makes “reactive” the
oxidising specie that in order to reach its stability (all coupled electrons) tends to extract the lacking
electron from the reducing specie (3). Such “reactivity” is inversely related to the half-life of free
radicals and although some free radicals like hydroxyl radical are very reactive and show a very short
life other free radicals like triphenyl-methyl are stable and long-living (3). Noticeably oxidising species
include also non-radical species like hydrogen peroxide (H2O2) which molecule, for instance, although
contains all paired electrons, is able to extract one electron from chloride thus oxidising it to
hypochlorite through the enzyme myeloperoxidase (3). Moreover even if oxidising species are referred
mostly to oxygen as electron-lacking atom they can be “centred” also on other elements, like nitrogen,
carbon, sulphur or chlorine. Therefore in this paper we will use the commonest terms “reactive oxygen
species” as synonymous of “reactive oxidising species” (ROS) to indicate any
oxygen/nitrogen/carbon/sulphur/chlorine radical/non-radical reactive oxidising specie e. g. hydroxyl
radical, nitric oxide, alkoxyl radical, thiyl radical, and hypochlorite, respectively (3).
In living organisms ROS are physiologically as well as continuously generated during the normal
metabolism by means of two mechanisms: the first one is mediated by enzymes while the second one is
triggered by physical agents or transition metals (3, 4). The enzyme-mediated production of ROS is
due to the activation of catalytic proteins that are located on the plasmamembrane, into the
mitochondria, in the endoplasmic reticulum (microsomes), into the peroxisomes and in the cytosol (3,
4); interestingly the biosynthesis as well as the catabolism of adrenaline, a mediator of emotional
stress, involves the production of ROS (5). Among the non-enzymatic mediated ROS reactions, there is
the homolytic breakdown where the administration of energy (as ionising radiation or heat) breaks a
covalent bond of the target molecule thus generating two distinct radical species both showing one
unpaired electron; a biologically relevant example of homolytic reaction is the water breakdown due to
X-ray (radiolysis) or UV-ray (photolysis) that generates two radicals, i. e. the hydrogen atom and the
hydroxyl specie. Another non-enzymatic mechanism involved in ROS generation is the production of
alkoxyl radical (RO.) and hydroperoxyl radical (ROO.) from peroxides (ROOH) that is mediated by a transition metal in ionic form, e. g. iron (Fe2+/Fe3+) or copper (Cu+/Cu2+), according to the so-called
Fenton’s reaction (3, 4, 6).
The main action of ROS is the extraction of one electron from another chemical specie. Such target specie can be any organic compound but generally speaking the preferential targets of oxidative processes are all the molecules showing at least a double covalent bond (e. g. –C=C–) because the second
bond (p) is a relatively free couple of electrons (3, 4). On this basis a descendent scale of susceptibility to
oxidation has been proposed for the most common biomolecules: unsatured fatty acids, amino
acids/proteins, nucleic acids and carbohydrates. Selective targets of ROS are also reduced thiol groups
(-SH) (e. g. from cysteine) that can be reversibly or irreversibly oxidized (7).
In any case by extracting one electron ROS can change not only the structure but also the function of
the target biomolecule with final biological effects that can result positive, negative or apparently
neutral, depending on the environmental conditions. By a physiological point of view such reactions
being highly conserved during the evolution seems to have been planned to allow the adaptation of living
organisms either to external or internal stressors (8).
In other words exogenous and/or endogenous stimuli may trigger the production of ROS that
activate/inhibit specific biochemical pathways inside the cells thus allowing them to face environmental
changes. For instance plants can adapt to many changing weather conditions (light to dark, dryness to
humidity) thanks to the production of hydrogen peroxide and other ROS (9, 10). Similarly animals seems
to exploit analogous mechanisms of adaptation by means of mild, transient and reversible protein
thiols-mediated oxidative changes which main goal is to modulate key signalling/transduction molecular
pathways of inflammatory/immune/toxic responses that are responsible of cell homeostasis and survival
(7, 11). A paradigmatic example of such mechanism is provided by the system ASK1-TRx, although redox
changes of thiol groups are only a piece of this intricate biochemical puzzle (12). A specific example of
ROS-mediated mechanism of adaptation is provided by the production of oxidants (e. g. hydrogen
peroxide and hypochlorous acid) by inflammatory cells in order to protect the tissues against bacterial
infections (13). Another relevant example of physiological modulation by ROS is provided by nitric oxide
pathway (10, 14).
The generally low energy expenditure required, the fast and easy way of production, the high
diffusibility, together with the very short half-life make ROS-mediated reactions really essential for
survival especially in a context of an autacoid modulation. Of course the success of such mechanisms is
closely related to the efficacy of their restoring machinery. As with the neurotransmission mechanisms,
where the mediator (e. g. acetylcholine) after acting must be destroyed or inactivated (e. g. by
acethylcholinesterase), even ROS must be neutralized, after having successfully reached their target
molecules (9, 10, 14). For this reason, in the course of millions of years of evolution, the living organisms
have developed the so-called “antioxidants” – i. e. exogenous or endogenous compounds/enzymes like
ascorbic acid, tocopherols, polyphenols, superoxide dismutase, catalase, glutathione peroxidase, and so
on – that act as “physiological modulators” of ROS (15, 16). Indeed the main role of the antioxidant
system is not to fight ROS but rather “to modulate” their actions and to avoid their unwanted side effects
(see below) (2, 11, 17). In such interplay the production of antioxidants can be also directly stimulated by
ROS themselves, as proved for Nrf-2 system that provides an excellent example of signal transduction
involving the DNA (18).
Nowadays these herein shown processes can be included in the modern concept of “oxidative eu-stress”
(EU-OS) that means “good or favourable stress”. Indeed EU-OS is by itself a “positive” adaptive
mechanism because it allows the living organism – through an appropriate oxidation – to successfully
respond to an environmental change (stimulus or stressor) (8). Much more EU-OS should be considered
as a necessary mechanism of homeostasis like the “emotional stress” (1). Indeed EU-OS and emotional
stress share many common features and in some way the first one provides a solid biochemical basis for
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
3030
the second one (2, 6, 17). Furthermore it seems that the evolution of living organisms – together with
their metabolic, energetic and reproductive changes – during the last billion of years, was driven just by
redox changes (which witnesses are both the increased levels of oxygen in the atmosphere and cysteine
in the proteome) according to a “redox code” which expression is modulated by the intracellular[NAD+/NADH+H+] and [(-SH)2/(-S-S-)] ratios (8).
Going back to the basic concept of EU-OS, the physiological modulation by the commonly called
“antioxidants” is crucial because a ROS as opposed to a neurotransmitter (or a hormone), especially if
in excess, because acts in a non-specific way, can extract its lacking electron not only from its specific
targets but also from other bio-molecules like unsatured fatty acids or nucleic acid, that can result
permanently and irreversibly oxidised (15). In turn these events can lead to intracellular and/or
extracellular injuries that are finally responsible of functional and/or organic damages potentially in
all cells, tissues and organs, with a loss of whole body wellness (3).
To define these phenomena from the pathophysiological view point the term “oxidative di-stress” or
“oxidative stress” (OS) as such has been coined (3, 4, 19). Oxidative stress is more than a “break of the
balance between ROS and antioxidants” as often improperly described in almost all academic papers
(3). Rather, OS highlights the inability of the host’s redox system to manage the oxidative chain
reactions triggered by the stressor/stimulus because ROS are in excess and/or the “antioxidant” system
of modulation is ineffective (20). A classical example of oxidative di-stress is provided by the
inappropriate leukocytes ROS production in the periodontitis, where the uncontrolled production of
ROS can lead to the destruction not only of the stressors, i. e. the bacteria, but also of the organs
involved, i. e. the teeth (21).
Oxidative stress is generally recognized to play a variable pathogenic role in early aging and in
several inflammatory and/or metabolic and/or degenerative diseases including arthritis, diabetes,
atherosclerosis and arterial hypertension (and their consequences, such as stroke and myocardial
infarction), Alzheimer’s disease, Parkinson’s disease, cancer, and so on (22).
However OS is not a “disease” in the traditional sense of the word. It is the unwanted effect of redox
system dysfunction that can impact, often deceitfully, the onset and/or the course of several basic
diseases. As it is not a classical disease, OS does not show a specific clinical picture but hides itself
behind the symptoms and signs of the basic underlying sickness (e. g. arterial hypertension). Therefore,
OS should be considered as an emerging health risk factor that can be identified only through specific
laboratory tests (22, 23).
In this object the above generally accepted definition of OS provides a suitable rationale to measure
redox homeostasis in Humans. Indeed an increased production of ROS and/or a decreased efficacy of
the antioxidant defence system inside or outside the cells may lead to the (per)oxidation of a number of
biomolecules and/or to the drop of antioxidants level/activity either in tissues or extracellular fluids
which may represent the optimal specimens where to evaluate the OS (24). Therefore any evaluation of
OS must be global i. e. must take in account not only the oxidant but also the antioxidant processes.
In order to identify subjects who are at risk for OS (because they are exposed to potential sources of
ROS or they are affected by OS-related diseases or they are under treatment for OS-related therapies
like radiotherapy) the first line approach to measure OS in clinical practice is to evaluate both the
so-called total oxidant capacity/activity e. g. by means of d-ROMs test and the so-called total
antioxidant capacity/activity e. g. by means of BAP test, anti-ROMs test, and OXY-adsorbent test on
blood plasma/serum samples (24, 25). Indeed almost all these tests showed appropriate and easy to
perform and displayed favourable benefits/costs ratios, also due to the possibility to be performed
through a photometer that is the most common chemical analytical device (24, 25). For instance
d-ROMs and BAP test can be performed “at-a-glance” by the doctor his-self in any clinical settings
including ambulatories through dedicated and integrated devices e. g. CARPE DIEM or CARRIO DUO
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
3131
systems (Wismerll Ltd, Tokyo, Japan), that incorporate a small centrifuge, a dry thermostated block and
a photometric reading cell; this approach allows the clinician to do the results to the patient in a few
minutes (26, 27). Of course when the main purpose of such tests is the screening and/or the monitoring of
OS in wider samples of population these analyses can be performed through multiple analysers (28).
When the main aim of OS measurement is a particular clinic need (e. g. to monitor the effect of the
vitamin E supplementation on lipid peroxidation in a patient suffering from cardiovascular diseases) or
a clinical research (e. g. to evaluate in a controlled clinical trial on hypertensive subjects the impact of a
calcium blocker drug on redox homeostasis) a second line of more specific tests for oxidative and
antioxidant processes, respectively, is available.
The golden standard approach to evaluate oxidative processes is to measure directly the level of
oxidant species in the biological specimen (e. g. blood, urine, seminal fluid and so on) (22, 24, 25). This
goal can be achieved by using electron spin resonance for radical ROS (like hydroxyl or peroxyl radicals),
or other photometric/fluorescent methods for non-radical ROS (like hydrogen peroxide). When such
direct measurement of ROS is not possible, different methods, referred to as fingerprinting, must be
applied (24, 25). According to this approach, a radical is inferred from the molecular nature of the
damage it causes to biological molecules. Indeed once the OS level is great enough to overcome the
antioxidant defences, ROS can theoretically damage every component of the cell, including lipids, amino
acids, proteins, and nucleic acids, thus generating oxidized by-products; these damaged molecules – or
the products resulting from their breakdown – can be considered as a “fingerprinting” (22, 24, 25).
Therefore oxidative damage is presumed to happen in vivo when it generates identifiable and
quantifiable specific by-products in vitro, like hydroperoxides, chloramines, advanced glycosylation end
products, isoprostanes, 8-OH-dG) (22, 24, 25), that are assumed to be biomarkers of oxidative status.
Notably, some of these “biomarkers”, like hydroperoxides, can also act as “amplifiers” of oxidative
damage, which underscores the importance of detecting these molecules in order to reduce not only the
effect but also the cause of OS (22, 24, 25).
On the opposite side, in order to evaluate the antioxidant defences many direct methods allow measure
the level of water/lipid-soluble antioxidants (e. g. vitamin C and E) as well as the activity of enzymes
that are involved in redox reactions (e. g. superoxide dismutase, catalases, and peroxidases) in tissues or
biological fluids (22, 24, 25).
In this scenario, the systematic evaluation in biological samples (tissues or fluids) of primary oxidant
chemical species and their derivatives, like hydroperoxides, as well as the dosing of antioxidant
compounds/activities, like selenium and glutathione peroxidase, respectively, are not a terminal “ring”
in the diagnostic chain on informational flow in biological systems (DNA→PROTEINS→
METABOLITES) but can take a “central”place compared to genomics, transcriptomics, proteomics and
metabolomics (24, 29). For this reason very recently we introduced the novel concept of “redoxomics” (a
term previously and ambiguously used to identify only some oxidised by-products in the field of
proteomics) (29, 30).
Redoxomics is a novel branch of “applied biochemistry” and “molecular diagnostics” having the
following aims:
• to analyse the structure, the physiological role and the distribution of OCS and antioxidant systems in
a living organism;
• to identify the reciprocal interactions of oxidant and antioxidant systems – in the general flow of
information – in a biological system (cell, tissue, organ, apparatus, system, whole organism) in a
defined step of its development, in basic conditions as well as after potentially stressful stimuli;
• to evaluate the implications of these findings by the view-point of epidemiology, patophysiology, clinics,
pharmacology and so on (30).
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
3232
The ambitious goal of redoxomics (as well as for other “-omics” in other fields) is “to map” dynamically
– by means of all the available and sophisticated analytical techniques, from electron spin resonance to
imaging – the whole oxidative-antioxidant repertoire, i. e. the “redoxoma” of a living unit in different
conditions (30).
This “integrated” approach by allowing to monitor every qualitative/quantitative changes of oxidative
balance can help the clinicians to find the optimal and “personalised” solution to correct any eventual
abnormality of redox status associated to human disease (24, 25, 30). In order to reach this goal a
specific original algorithm (31) can drive the clinician to identify the possible cause(s) and the relative
mechanism(s) (i. e. inflammation, impairment of mitochondrial respiratory function,
ischemia-reperfusion damage and pharmaco-metabolic induction) which are responsible for the
impaired oxidative balance (32–35). On the basis of the prevalent mechanism, the clinician will be able
to prescribe, in the single clinical case, a specific treatment able to reduce the increased oxidant
capacity (causative or etiological therapy) and/or to strengthen the antioxidant defences
(supplementation) (24, 31).
The prevention and/or the treatment of the diseases associated with the OS requires, besides specific
options depending on the prevalent involved mechanism, an integrated approach that Cooper (Dallas,
Texas, US) defined some years ago as the “antioxidant revolution” (36). In such a context it is very
important, after undergoing the tests, to ameliorate the life style, by adopting a healthy nutritional
model like “Mediterranean Diet” or “Okinawan Diet” that include exercise, good social relationships
and spiritual/meditation thinks (37, 38).
The American Guide Lines for Food Intake, some of which are followed by Oncologists for the
prevention of tumours, clearly suggest to take everyday from 5 to 8 portions of fruits and vegetables,
preferably fresh and in season (39). However, some Researchers prefer to this “empiric” suggestion a
more objective criteria, like that one based on the Oxygen Radical Adsorbent Capacity (ORAC) score
(40). This system is able to quantify the in vitro antioxidant capacity of all common fruits and
vegetables. For instance, 100 g of dried prunes allows an intake of 5770 ORAC UNITS. Alternatively,
the clinician can exploit the nutritional requirement found in RDA tables (recommended dietary
allowances) and LARN tables (minimal levels of recommended nutrients), which vary depending on the
geographic area, the age and the gender (41).
However, we cannot exclude that the level of food nutrients, as expected on the basis of the above
tables, is exactly the real level of the same nutrients we take when we eat a fruit or a vegetable. Indeed,
the impoverishment of the soil (due to abnormal exploitation of the soil itself, acidic rains, increasing
desertification, pollution and so on), the often uncontrolled use of pesticides, the processes of
refinement of vegetables, the processes of transformation, storage, and even the cooking of foods can
variably affect the original, as described in the above tables, antioxidant content of fruits and
vegetables (42). Therefore, as a precaution, many nutritionists today suggest the indiscriminate use of
antioxidants. However, the use of antioxidant supplements should be limited only to the documented
cases of OS, as biochemically detected by specific tests (24, 30, 43).
In this background, before suggesting any supplementation, every clinician should try to identify and
to remove the possible cause responsible for the increased production of free radicals. In particular,
reduced levels of antioxidant capacity suggest the real need of an antioxidant supplement and the
clinicians should follow some general criteria, which take into account the chemical characteristics and
the amount of the micronutrients to be proposed, the possible onset of unwanted side effects, the route
of administration, the clinical conditions of the patient, the concomitant administration of other drugs
and so on (43).
In summary, research now offers to health professionals the opportunity to identify and quantify
many markers which are currently used with the general purpose of preventing oxidative damage,
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
3333
diagnosing and monitoring OS, and evaluating the indications and effectiveness of antioxidant
supplementations and/or therapeutic interventions. Some of these markers like d-ROMs test have even
been proposed as being predictive of disease (44-46). Their potential usefulness in clinical practice is
increasing although new evidence is mandatory.
In line with these concepts it has been shown that the redox system is essential in exercise and sport
mainly due to the remarkable oxygen features. Indeed molecular oxygen was not only a fundamental
driving force of living organisms evolution but it pushed also Humans to develop – through the aerobic
metabolism – adaptive mechanisms to its handling i.e. the redox system (47).
It has been proposed that endurance running played a significant role in the evolution of Homo sapiens,
which allowed hominem, possibly from the time of Homo erectus, to hunt and obtain sufficient amounts
of meat for physical development. Based on this hypothesis, early human hunters with extreme
endurance capacity were undoubtedly highly successful. Unfortunately modern lifestyle physical
inactivity acts against the build-up of endurance capacity. And a low level of maximal oxygen uptake is a
risk factor for a number of diseases and increases the rate of mortality (47).
Probably, as a result of evolution, humans have evolved to a state where exercise-induced ROS can
stimulate elevation of the level of glucose transport to meet the need for increased metabolism. However
acute bouts of exercise, or exhaustive exercise, can elevate the oxidative damage to lipids, proteins, and
DNA and disrupt ROS-modulated signalling, which together could jeopardize cell survival. Therefore,
both acute and regular exercise can influence homeostasis, and then adaptation, which involves the
enhanced oxygen uptake-related benefits, the risk, and consequences of increased oxygen
uptake-dependent modulation of ROS production, and redox homeostasis (47).
Reactive oxygen and nitrogen species and other oxidants like hypochlorous acid, due to their
modulating activity in many metabolic processes, are constantly and physiologically produced by
muscle-skeleton system and its immune system under exercise (48).
The metabolic challenge triggered by physical exercise results in an elevated generation of ROS that
are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair,
which at moderate levels generate physiological responses (47). Several factors of mitochondrial
biogenesis, such as peroxisome proliferator-activated receptor-c-coactivator 1a (PGC-1a),
mitogen-activated protein kinase, and sirtuin-1 (SIRT-1) are modulated by exercise-associated changes
in the redox milieu. PGC-1a activation could result in decreased oxidative challenge, either by
upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower
levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants
glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during
physical exercise, controlling cellular function through redox-sensitive signaling and protein–protein
interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by
ROS-mediated activation of hypoxia-inducible factor 1a (47). Moreover, the exercise-associated ROS
production could be important to DNA methylation and post-translation modifications of histone
residues, which create heritable adaptive conditions based on epigenetic features of chromosomes.
Accumulating data indicate that exercise with moderate intensity has systemic and complex
health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling
while a single bout of exhaustive exercise results in elevated levels of lipid peroxidation, carbonylation of
amino acid residues, and 8-oxo-7,8 dihydroguanine (8-oxoG) in DNA. However, when a single bout of
exhaustive exercise is given to well-trained subjects, the body responds without a large elevation in
oxidative damage (47). In addition, regular exercise training-associated adaptation is a precondition
against treatment with H2O2, which causes a significant degree of damage for untrained subjects.
Moreover, when heart attacks or strokes are simulated in untrained and trained animals, the infarct size
is significantly smaller in the trained groups, showing that regular exercise acts as a preconditioning
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
3434
tool by enhancing the adaptive zone, by narrowing the theoretical distance between functional and
biological endpoints (47). This dual effect of exercise may contribute to explain the so-called “sport
paradox” where exercise-induced ROS production can either increase or reduce human lifespan (49).
On this basis any impairment of redox system in muscles, tendons, joints and so on can lead to a
functional and/or structural impairment of muscle-skeleton system as a whole. During strong aerobic
exercise uncontrolled oxidative processes (oxidative di-stress) can take place not only in the contracting
muscle but also in the engaged connective tissue compartments, as well as in the leukocyte and
erythrocyte plasmamembranes (48). The result of this process could be: inflammation of muscles
(subclinical myositis), inflammation of connective tissues and related organs (bursitis and tendinitis),
reduced number of leukocytes and rupture of their membranes (with subsequent reduced immune
activity and increased susceptibility to infectious diseases) and haemolysis (with subsequent reduced
arterial blood oxygen content and oxygen transport capacity) (48). Any of these consequences could
result in reduced physical performance directly or indirectly in elite athletes and those enrolled in daily
fitness programs.
A wide scientific literature on Humans as well as laboratory animals supports the usefulness of
d-ROMs and BAP test in sport medicine (49-110). In particular sport amateurs and elite athletes were
shown to exhibit a lower d-ROMs test values compared to the “general population” (55). This fact likely
reflects an optimal redox functioning, a postulated consequence of the training programs. As expected
total oxidant capacity increases after exercise respect to basal values, as measured at rest. This fact
certainly reflects the increased production of oxygen free radical and their derivatives, such as
hydroperoxides, after effort, that is a well-documented consequence of strenuous aerobic activity.
However, trained individuals were shown to have lower values of d-ROMs test when compared with
non-trained peoples (which are prone to have a less efficacious antioxidant system respect to their
trained colleagues) (55). In this picture, it is interesting to note that the values of d-ROMs test directly
correlated to the intensity of exercise performed. Indeed, a highest oxidant capacity was shown after a
great endurance cycling race. Such values could indicate an alteration in health condition and may also
reveal poor recovery levels or even overtraining conditions. Finally, decreased d-ROMs test values were
observed amongst athletes taking antioxidants. This evidence confirms that specific and effective
antioxidant treatment in athletes may be important in order to compensate the alterations created
during conditions of physical stress between the production of free radicals and the efficiency of
endogenous antioxidant mechanisms.
On the basis of such evidences it is clear that d-ROMs test (together with BAP test) provides an easy
and very suitable method for clinical practice not only to prevent and to monitor the oxidative stress
but also to “personalize” training programs and antioxidant therapy either in athletes or peoples
performing training programs (55). In this picture, the values provided by d-ROMs test are related to
those of other tests evaluating oxidative balance and most importantly they were shown to be
predictive for morbidity and mortality (45, 46).
Therefore, it’s very important that all athletes and subjects practising sports at amateur levels
monitor both their OS levels by means of d-ROMs test and BAP test in order to make exercise safely
and to avoid the damage induced by the oxidative di-stress (55).
In summary, since oxidative stress causes damages to cells which may lead to an alteration of the
DNA, as seen during recent investigations, it is of vital importance that athlete who are involved in
sporting activity at amateur levels monitor their level of oxidative stress. The concomitant
determination of both d-ROMs test and BAP test can be useful in order to evaluate weather training
regimen are suitable and, thereby to improve such training and also in order to change dietary habits
and to prescribe antioxidants in cases of proven oxidative stress. Such global redox balance
measurement can be particularly interesting also to obtain an index of psycho-physical condition of an
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
3535
athlete during normal and resting period, and, therefore, the oxidative stress condition of an athlete
after a competition. In fact, high values after a race could indicate an alteration in healthy condition
and may also reveal poor recovery levels or overtraining conditions. Finally, the available data on
d-ROMs test and BAP test suggest that such approach is useful to monitor and/or to personalize the
antioxidant treatment – like BAP MINERAL (Wismerll Ltd, Tokyo, Japan) – either in athletes or in
healthy peoples. In this field further studies are in progress.
More recently oxygen infusion technique (Maya Beauty, MBE, Bologna, Italy; imported by Wismerll
Ltd, Tokyo, Japan) has been firstly introduced worldwide in Japan for sport medicine purposes in order
to prevent and to treat exercise-related OS. This non-invasive technique – previously successfully
applied in the Aesthetic Medicine – consists in the topical application of pulsed pure molecular oxygen
(94 to 98%) under pressure (2 to 3 times higher than normal atmosphere pressure). By this way
molecular oxygen should be enabled to pass transcutaneoulsy and to reach the underlying soft tissues
including muscles (111-116). Oxygen infusion may exhibit trophic, decontracting, analgesic,
anti-inflammatory, immune-modulating, and redox balancing effects thus counteracting dehydration,
overwarming, energy depletion and lactic acid accumulation for a better performance and a faster
recovery after exercise (117). Moreover oxygen propulsion is a promising curative technique in joint
disorders like osteoarthritis, meniscus and cartilage disorders and synovial membranes injuries (118).
All these effects are compatible to the ability of pure oxygen to reduce the level of hypoxia-inducible
factor 1a, thus reprogramming cell from anaerobic to aerobic metabolism (119). Clinical trials are in
progress in order to confirm such hypothesis.
References
1. Jackson M. Evaluating the role of Hans Selye in the modern history of stress. In Cantor D, Ramsden
E, Editors. Stress, shock, and adaptation in the Twentieth Century. Chapter 1. Rochester (NY).
University of Rochester Press. 2014.
2. Davies KJA. Adaptive homeostasis. 2016. Mol Aspects Med. 49: 1–7.
3. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd Edn, Clarendon Press,
Oxford. 1989.
4. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, et Al. Free radicals and antioxidants in normal
physiological functions and human disease. Int J Biochem Cell Biol. 2007. 39 (1): 44–84.
5. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis.
2013. 3(4): 461–491.
6. Delattre J. Introduction: from molecular oxygen to oxidative stress and radical biochemistry. Ann
Pharm Fr. 2006. 64 (6): 363.
7. Nishida M, Kumagai Y, Ihara H, Fujii S, Motohashi H, et Al. Redox signaling regulated by
electrophiles and reactive sulfur species. J Clin Biochem Nutr. 2016. 58(2): 91–98.
8. Jones DP, Sies H. The redox code. Antioxidants & Redox Signaling. 2015. 23 (9): doi:
10.1089/ars.2015.6247.
9. Sewelam N, Kazan K, Schenk PM. Global plant stress signaling: reactive oxygen species at the
cross-road. Front Plant Sci. 2016. 7: 187. doi: 10.3389/fpls.2016.00187.
10. Gupta KJ, Igamberdiev AU. Reactive nitrogen species in mitochondria and their implications in
plant energy status and hypoxic stress tolerance. Front Plant Sci. 2016. 7: 369. doi:
10.3389/fpls.2016.00369.
11. Yan LJ. Positive oxidative stress in aging and aging-related disease tolerance. Redox Biol. 2014. 2C:
165–169.
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
3636
12. Cohen-Kutner M, Khomsky L, Trus M, Aisner Y, Niv MY, et Al. Thioredoxin-mimetic peptides (TXM)
reverse auranofin induced apoptosis and restore insulin secretion in insulinoma cells. Biochem
Pharmacol. 2013. 85 (7): 977–990.
13. Trenam CW, Blake DR, Morris CJ. Skin inflammation: reactive oxygen species and the role of iron. J
Invest Dermatol. 1992. 99(6): 675–682.
14. Weidinger A, Kozlov AV. Biological activities of reactive oxygen and nitrogen species: oxidative stress
versus signal transduction. Biomolecules. 2015. 5(2): 472–484.
15. Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, et Al. Antioxidant
responses and cellular adjustments to oxidative stress. Redox Biol. 2015. 6; 183–197.
16. Cornelli U, Belcaro G, Ledda A, Feragalli B. Activity of some physiological modulators in reducing
the side effects of levothyroxine in patients suffering from primary hypothyroidism. Panminerva Med.
2011. 53(3 Suppl 1): 99–103.
17. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, et Al. Oxidative stress, prooxidants, and antioxidants.
The interplay. BioMed Res Internat. 2014. Article ID 761264, 19 pages.
18. Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in
cellular signaling. Cell Signal. 2012. 24(5): 981–990.
19. Kandola K, Bowman A, Birch-Machin MA. Oxidative stress – a key emerging impact factor in health,
ageing, lifestyle and aesthetics. Int J Cosmet Sci. 2015. Suppl 2:1–8.
20. Lushchak VI. Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Compar
Biochem Physiol Part C. Toxicol Pharmacol. 2011. 153 (2): 175–190.
21. Masi S, Salpea KD, Li K, Parkar M, Nibali L, et Al. Oxidative stress, chronic inflammation, and
telomere length in patients with periodontitis. Free Radic Biol Med. 2011. 50 (6): 730–735.
22. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in
human disease. Clinical Chemistry. 2006. 52 (4): 601–623.
23. Ridker PM, Brown NJ, Vaughan DE, Harrison DG, Mehta JL. Established and emerging plasma
biomarkers in the prediction of first atherothrombotic events. Circulation. 2004. 109 (Suppl. IV): IV-6 –
IV-19.
24. Iorio EL, Balestrieri ML. The oxidative stress [original title “Lo stress ossidativo”]. Trattato Italiano
di Medicina di Laboratorio, di Angelo Burlina, Ed. Balestrieri C, Piccin, Padua, Italy. 2009. 533–549.
25. Regano N, Iorio E.L, Guglielmi A, Mazzuoli S, Francavilla A, Fregnan S, Leogrande G, Guglielmi FW.
The assessment of oxidative stress in clinical pratice and its importance in nutrition. Nutritional
Therapy & Metabolism. 2008. 26 (4): 149–162.
26. Cesarone MR, Belcaro G, Carratelli M, Cornelli U, De Sanctis MT, Incandela I, Barsotti A, Terranova
R, Nicolaides A. A simple test to monitor oxidative stress. International Angiology. 1999. 18 (2): 127–
130.
27. Dohi K, Satoh K, Ohtaki H, Shioda S, Miyake Y, Shindo M, Aruga T. Elevated plasma levels of
bilirubin in patients with neurotrauma reflect its pathophysiological role in free radical scavenging. In
Vivo. 2005. 19 (5): 855–860.
28. Vassalle C, Boni C, Di Cecco P, Ndreu R, Zucchelli GC. Automation and validation of a fast method
for the assessment of in vivo oxidative stress levels. Clin Chem Lab Med. 2006. 44 (11): 1372–1375.
29. Dalle-Donne I, Scaloni A, Butterfield D.A. Redox proteomics: from protein modifications to cellular
dysfunction and diseases. 2006. Wiley Press, New York.
30. Iorio EL, Marin MG. Redoxomics. An integrated and practical approach to genomics, metabolomics
and lipidomics to manage oxidative stress. Gen-T. 2008. 2: 67.
31. Iorio EL, Cinquanta L, Pisano R. A diagnostic algorithm to manage oxidative stress. Australasian J
Cosmet Surg. 2006. 2 (1) : 26-30.
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
3737
32. Trenam CW, Blake DR, Morris CJ. Skin inflammation: reactive oxygen species and the role of iron. J
Invest Dermatol. 1992. 99(6): 675–682.
33. Sanz A. Mitochondrial reactive oxygen species: do they extend or shorten animal lifespan? Biochim
Biophys Acta. 2016. doi: 10.1016/j.bbabio.2016.03.018.
34. Marcocci C, Leo M, Altea MA. Oxidative stress in Graves’ disease. Eur Thyroid J. 2012. 1(2): 80–87.
35. Shimamoto N. A pathophysiological role of cytochrome p450 involved in production of reactive oxygen
species. Yakugaku Zasshi. 2013. 133(4): 435–450.
36. Cooper KH. The antioxidant revolution. 1997. Paperback Ed.
37. Dernini S, Berry EM. Mediterranean diet: from a healthy diet to a sustainable dietary pattern. Front
Nutr. 2015. 2: 15. doi: 10.3389/fnut.2015.00015.
38. Willcox DC, Scapagnini G, Willcox BJ. Healthy aging diets other than the Mediterranean: a focus on
the Okinawan diet. Mech Ageing Dev. 2014. 136–137: 148–162.
39. U.S. Department of Health and Human Services Centers for Disease Control and Prevention. 5 a day
works. 2005.
40. Ou B, Chang T, Huang D, Prior RL. Determination of total antioxidant capacity by oxygen radical
absorbance capacity (ORAC) using fluorescein as the fluorescence probe: First Action 2012.23. J AOAC
Int. 2013. 96 (6): 1372–1376.
41. Murphy SP, Yates AA, Atkinson SA, Barr SI, Dwyer J. History of nutrition: the long road leading to
the dietary reference intakes for the United States and Canada. Adv Nutr. 2016. (1): 157–168.
42. Cherry KA, Shepherd M, Withers PJ, Mooney SJ. Assessing the effectiveness of actions to mitigate
nutrient loss from agriculture: a review of methods. Sci Total Environ. 2008. 406 (1–2): 1–23.
43. Cornelli U, Iorio EL. Antioxidants. Therapeutic and diagnostic aspects. [original title
“Antiossidanti. Aspetti terapeutici e diagnostici”]. Guna Ed. 2007.
44. Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, et Al. Glutathione peroxidase 1
activity and cardiovascular events in patients with coronary artery disease. N Engl J Med. 2003.
349(17):1605-1613.
45. Vassalle C, Bianchi S, Bianchi F, Landi P, Battaglia D, Carpeggiani C. Oxidative stress as a predictor
of cardiovascular events in coronary artery disease patients. Clin Chem Lab Med. 2012. 50 (8): 1463–
1468.
46. Aleksandrova K, Jenab M, Bueno-de-Mesquita HB, Fedirko V, Kaaks R, et al. Biomarker patterns of
inflammatory and metabolic pathways are associated with risk of colorectal cancer: results from the
European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Epidemiol. 2014. 29(4):
261–275.
47. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M. Oxygen consumption and usage during physical
exercise: the balance between oxidative stress and ROS-dependent adaptive signalling. Antiox &
Redox Signal. 2013. 18 (10): 1208–1247.
48. Karlsson J. Antioxidants and exercise. Human Kinetics. 1997.
49. Margaritis I, O’Donovan I. Oxidative status and the paradox of sport shortening and prolonging life.
Proceedings of The International Conference on Ageing. Paris. 2004. March, 19. 2004. P. 39
50. Nanni G, Dolci A, Roi GS, Palli R, Bangi G. On the usefulness of biochemical monitoring of oxidative
stress and antioxidant activity during a football season [original title “Utilità del monitoraggio
biochimico dello stress ossidativo e dell’attività antiossidante durante la stagione calcistica”].
Proceedings 18th National Congress L.A.M.I.CA. 1998, June, 18–20. Campione d’Italia, Como, Italy.
1998. 66.
51. Dolci A, Nanni G, Roi GS, Palli R, Banfi G. Oxygen free radicals and total antioxidant status in
professional team during football season. Biochemia Medica. 2000. 10 (1–2): 67.
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
3838
52. Dolci A, Muller MM. Oxidative stress induced by physical exercise: the biochemical monitoring.
Proceedings Meeting “Medical Laboratory of Physical Exercise and Sports”. 2001, December, 6–7.
Padua, Italy. 2001. 18.
53. Iorio EL, Carratelli M, Quagliuolo L, Caletti G. Oxidative stress evaluation in athletes Proceedings
2nd International Conference on Oxidative Stress and Aging. 2001, April, 2–5. Maui, Hawaii, US.
2001. 60.
54. Razzano M, Brambilla P. Picozzi I, Gironi A, Giani E. Assessment of some metabolic and oxidative
parameters in athletes during an agonistical season [original title “Valutazione di alcuni parametri
metabolici ed ossidativi in atleti nel corso di una stagione agonistica”]. Biochimica Clinica. 2001. 25
(2): 139.
55. Iorio EL. d-ROMs test in sport. Cosmetic News. 2004. 157: 272–275.
56. Iorio EL. Oxidative stress, sport trauma and rehabilitation. New proposals for an integrated
approach. Proceedings XIV International Congress on Sports Rehabilitation and Traumatology “The
accelerated rehabilitation of the injured atlete”. 2005, April, 9–10. Bologna, Italy. 2005. 127.
57. Banfi G, Malavazos A, Iorio EL, Dolci A, Doneda L, Verna R, Corsi MM. Plasma oxidative stress
biomarkers, nitric oxide and heat shock protein 70 in trained elite soccer players. Eur J Appl Physiol.
2006. 96 (5): 483–486.
58. Cases N, Sureda A, Maestre I, Tauler P, Aguilo A, Cordova A, Roche E, Tur JA, Pons A. Response of
antioxidant defences to oxidative stress induced by prolonged exercise: antioxidant enzyme gene
expression in lymphocytes. Eur J Appl Physiol. 2006. 98: 263–269.
59. Yamami N, Nakayama H, Kongoji J, Togawa S, Nozawa T, Yagishita K, Shibayama M, Nakayama T,
Suzuki N, Yamamoto K, Kawashima M, Mano Y. Free radicals and antioxidant potential in scuba
divers. Proceedings Undersea and Hyperbaric Medical Society. Scientific Meeting & Associates/BNA.
Annual Scientific Meeting. 2006, June, 22–24. Orlando, Florida, US. 2006. 98–99.
60. Cavallini M, Iorio EL. Effect of training and antioxidant supplementation on oxidative balance in
martial arts. Journal of Molecular and Clinical Pathology. 2007. 2: 14–15.
61. Giganti MG, Iorio EL, Verna R, Zenobi R. Oxidative balance in scuba divers. Journal of Molecular
and Clinical Pathology. 2007. 3: 101.
62. Iorio EL. Oxidative stress and sport [original title “Stress ossidativo e sport”]. European Journal of
Health, Sport and Nutrition. 2007. 1: 102–103.
63. Kettawan A, Kunthida C, Okuno M, Takahashi T, Kongkachuichai R, Sungpuag P, Kishi T, Okamoto
T. Protective effects of Coenzyme Q10 against oxidative stress induced by aerobic exercise. Proceedings
5th Conference of the International Coenzyme Q10 Association. 2007, November, 9–12. Kobe Gakuin
University at Port Island. Kobe, Japan. 2007. J12–044 (1–2).
64. Maruoka H, Komaki K, Inoue K. Effects of muscle stress on oxidative stress. J Phys Ther Sci. 2007.
19: 273–276.
65. Yamami N, Yagishita K, Togawa S, Kongoji J, Nakayama H, Shibayama M, Suzuki N, Yamamoto K,
Nozawa T, Kawashima M, Mano Y. Changes of serum free radicals and antioxidant potential in
rebreather divers. Proceedings Undersea and Hyperbaric Medical Society. Annual Scientific Meeting.
2007, June, 14–16. Ritz-Carlton Kapalua, Maui, Hawaii, US. 2007. 137.
66. Zenobi R, Verna R, Giganti MG. IL-6, TNF- and reactive oxygen metabolites in amateur athletes.
Journal of Molecular and Clinical Pathology. 2007. 3: 103.
67. Zenobi R, Verna R, Giganti MG. Inflammatory cytokines and oxidative stress: parameters to evaluate
the physical status during sport activity. Biochimica Clinica. 2007. 31 (5): 484.
68. Bertone M, Rizzo M, Assorgi R, Muscatello A, Crisostomi S, De Blasis E, Di Giacinto B, Spataro A,
Iorio EL. Plasma oxidant and antioxidant capacity at rest, after exercise-induced dehydration, and
after rehydration with an antioxidant drink in elite rowers. Med Sport. 2008. 61: 487–495.
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
3939
69. Francavilla G, Parisi A, Quattrocchi A, Francavilla VC, Rosa M, Cicero A, Ingallina F, Caruso A,
Puccione G, Mastromauro R, Fatuzzo G, Rosa A. Oxidative stress and free radicals decrease with
platform vibropower verified with fras system [original title “Riduzione dello stress ossidativo e dei
radicali liberi, verificata con metodica FRAS, mediante l’uso della pedana Vibropower”]. Acta Medica
Mediterranea. 2008. 24: 93–98.
70. Fujimoto H, Katayama K, Hayashi T, Kimura K, Yano T. Effect of electroacupuncture on
exercise-induced oxidative stress. Zen Nippon Shinkyu Gakkai Zasshi (Journal of the Japan Society of
Acupuncture and Moxibustion: JJSAM). 2008. 58 (2): 203–212.
71. Beltrami G, Cannella C, Casacci F, Casasco M, Coiana L, Del Toma E, Di Luigi L, Faina M, Romano F.
Effects of the intake of a meal based on high or low glycemic index carbohydrates on the physiological,
metabolic and performance response in a group of amateur cyclists and racers [original title “Effetti
dell’assunzione di un pasto a base di carboidrati ad alto o basso indice glicemico, sulla risposta
fisiologica, metabolica e prestativa in un gruppo di ciclisti e podisti amatoriali”]. Medicina dello Sport.
2009. 62 (1, S1): 41–48.
72. Hattori N, Hayashi T, Nakachi K, Ichikawa H, Goto C, Tokudome Y, Kuriki K, Hoshino H, Shibata K,
Yamada N, Tokudome M, Suzuki S, Nagaya T, Kobayashi M, Tokudome S. Changes of ROS during a
two-day ultra-marathon race. Int J Sports Med. 2009. 30: 426–429.
73. Martarelli D, Cacchioni M, Scuri S, Pompei P. Diaphragmatic breathing reduces exercise-induced
oxidative stress. Evidence-Based Complementary and Alternative Medicine. 2009. 2011: Article ID
932430, 10 pages. DOI: 10.1093/ecam/nep169.
74. Martarelli D, Pompei P. Oxidative stress and antioxidant changes during a 24-hours muntain bike
endurance exercise in master athletes. J Sports Med Phys Fitness. 2009. 49 (1): 122–127.
75. Martinovic J, Dopsaj V, Dopsaj MJ, Kotur-Stevuljevic J, Vujovic A, Stefanovic A, Nesic G. Long-term
effects of oxidative stress in volleyball players. Int J Sports Med. 2009. 30 (12): 851–856.
76. Pešić S, Jakovljević V, Čubrilo D, Živković V, Jorga V, Mujović V, Stojimirović B. Oxidative status
evaluation in elite karate athletes during training process [original title “Evaluacija oksidativnog
statusa kod vrhunskih sportista-karatista u procesu treninga”]. Vojnosanitetski Pregled. 2009. 66 (7):
551–555.
77. Spataro A, Crisostomi S, Cifra B, Di Cesare A, Di Giacinto B, De Blasis E, Poli P, Pucci N, Rizzo M.
The rowing ten years later [original title “Il canottaggio dieci anni dopo”]. Medicina dello Sport. 2009.
62 (2): 209–240.
78. Takahashi M, Matoba H, Satake M, Tanaka To, Kaneyasu M, Obara S. Effect of jogging training on
oxidative stress responses and antioxidant capacity in middle-aged persons. Medicine & Science in
Sports & Exercise. 2009. 41 (5): 496.
79. Andersson H, Karlsen A, Blomhoff R, Raastad T, Kadi F. Active recovery training does not affect the
antioxidant response to soccer games in elite female players. Br J Nutr. 2010. 104 (10): 1492–1499.
80. Andersson H, Karlsen A, Blomhoff R, Raastad T, Kadi F. Plasma antioxidant responses and oxidative
stress following a soccer game in elite female players. Scand J Med Sci Sports. 2010. 20 (4): 600–608.
81. Ganzit GP, Verzini F, Hajdarevic A, Riganti A. Biomedical aspects of 51 consecutive marathons. Med
Sport. 2010. 63: 391–408.
82. Hosseini SM, Azimi H, Jamshir M. Exercise, voluntary apnoea and reactive oxygen species. Br J
Sports Med. 2010. 44: i24–i25.
83. Martinović J, Dopsaj V, Kotur-Stevuljević J, Dopsaj M, Stefanović A, Kasum G, Vujović A. Are
oxidative stress and antioxidant defense status associated with energy expenditure in athletes of
various sports? Serbian Journal of Sports Sciences. 2010. 4 (2): 75–81.
84. Nagasawa J, Kikkawa K, Takai T, Sakaguchi A, Noguchi I, Kizaki T, Ohno H. Exercise intensity and
antioxidant ability. Rejuvenation Research. 2010. 13 (2–3): 172–174.
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
4040
85. Tsukio S, Oyama F, Takahashi M, Sekikawa K, Inamizu T. Changes in plasma oxidative stress
biomarkers after single-sprint anaerobic exercise. Advances in exercise and sports physiology. 2010. 16
(1): 7–13.
86. Angelini F, Buonocore D, Rucci S, Stesina G, Stefanini L, Bonuccelli A, Tencone F, Marzatico F.
Oxidative stress vs hormonal profile in plasma and saliva: application in sport performance. J Internat
Soc Sports Nutr. 2011. 8 (Suppl 1): P34.
87. Domen S, Taito S, Konishi K, Takahashi M, Sekikawa K, Inamizu T, Hamada H. Pulmonary
Oxidative stress is not increased by short-period high intensity exercise in healthy young subjects.
Rigakuryoho Kagaku. 2011. 26 (2): 287–290.
88. Jamshir M, Hosseini SM, Hajimashhadi Z, Azimi H. Effect of voluntary apnea on reactive oxygen
species. Journal of Gorgan University of Medical Sciences. 2011. 13 (3): 59.
89. Martarelli D, Verdenelli MC, Scuri S, Cocchioni M, Silvi S, Cecchini C, Pompei P. Effect of a probiotic
intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training.
Curr Microbiol. 2011. 62 (6): 1689–1696.
90. Martinović J, Dopsaj V, Kotur-Stevuljević J, Dopsaj M, Vujović A, Stefanović A, Nešić G. Oxidative
stress biomarker monitoring in elite women volleyball athletes during a 6-week training period. J
Strength Cond Res. 2011. 25 (5): 1360–1367.
91. Martinović J, Dopsaj V, Kotur-Stevuljeviå J, Dopsaj M, Vujoviå A, Stefanoviå A, Nešić G. IGF-1 abuse
in sport: clinical and medico-legal aspects (Proxidant/antioxidant balance in supplemented elite
female volleyball athletes during a six week training period). J Sports Med Phys Fitness. 2011. 51 (1):
145–152.
92. Maruoka H, Fujii K. Effect of the reduced coenzyme Q10 and exercise training on the oxidative stress
regulation system and exercise capacity in mice. Japan J Complement alternat Med. 2011. 9: 85–97.
93. Nagashima M. Effects of endurance exercise on oxidative stress and antioxidant vitamin levels in
trained cyclists. Japan J Physical Fitness & Sport Med. 2011. 60 (3): 279–286.
94. Omi N, Katayama R, Asano K, Miyakawa N, Nishino H, Ezawa I. The effectiveness of licopene intake
with treadmill running exercise training for bone moneral content increase in growing rats. J Exercise
& Sports Physiol. 2011. 18 (1): 11–20.
95. Shimizu T, Imanishi A, Sugimoto K, Takeda N, Hirata R, Andou T, Morikawa S, Suzuki Y, Watanabe
M, Okuta M, Kawana T, Namikawa Y, Suzuki M, Watanabe M, Okada T, Ohta M. Sequential changes
of inflammatory and stress responses during 24-hour running. Rinsho Byori. 2011. 59 (10): 930–935.
96. Takahashi M, Suzuki K, Matoba H, Satake M, Sakamoto S, Obara S. Effects of moderate-intensity
endurance exercise on reactive oxygen species production and leukocyte activation markers. The
Japanese Society for Complementary and Alternative Medicine. 2011. 3: 25–28.
97. Takahashi M, Suzuki K, Matoba H, Satake M, Sakamoto S, Obara S. Effects of moderate-intensity
endurance exercise on reactive oxygen species production and leukocyte activation markers. Japan
Journal Complement Alternat Med. 2011. 8 (1): 25–28.
98. Aoki K, Nakao A, Adachi T, Matsui Y, Miyakawa S. Pilot study: effects of drinking hydrogen-rich
water on muscle fatigue caused by acute exercise in elite athletes. Med Gas Res. 2012. 2 (1): 12.
99. Corsetti R, Villa M, Pasturenzi M, Finco A, Cornelli U. Redox state in professional cyclists following
competitive sports activity. The Open Sports Medicine Journal. 2012. 6: 34–41.
100. Kawamoto K. The use of the d-ROMs test and BAP test in the sport contitionning. Proceedings 9th
Oxidative Stress – Antioxidant Seminar. Tokyo, Japan. 2012, July, 8th. 2012. L02.
101. Kotani K, Tsuzaki K, Sakane N, Taniguchi N. The correlation between small dense ldl and reactive
oxygen metabolites in a physical activity intervention in hyperlipidemic subjects. J Clin Med Res. 2012.
4(3): 161–166.
Educational Lecture
The 3rd Sports & Oxidative stress・Anti-oxidant Seminar
4141
102. Kotani K, Caccavello R, Mutou T, Yamada T, Taniguchi N, Gugliucci A. Association between reactive
oxygen metabolites and paraoxonase 1 activity during a physical activity increase intervention with
older Japanese people. Australas J Ageing. 2012. 31(4): 222–226.
103. Kawamoto K. The oxidative stress in sports training. Proceedings 11th Oxidative Stress –
Antioxidant Seminar. Tokyo, Japan. 2013, July, 21st. 2013. 108.
104. Morikawa Y, Mizuno Y, Harada E, Katoh D, Kashiwagi Y, Morita S, Yoshimura M, Uemura S, Saito
Y, Yasue H. Aerobic interval exercise training in the afternoon reduces attacks of coronary spastic
angina in conjunction with improvement in endothelial function, oxidative stress, and inflammation.
Coron Artery Dis. 2013. 24 (3): 177–182.
105. Takahashi M, Miyashita M, Kawanishi N, Park JH, Hayashida H, Kim HS, Nakamura Y, Sakamoto
S, Suzuki K. Low-volume exercise training attenuates oxidative stress and neutrophils activation in
older adults. Eur J Appl Physiol. 2013. 113 (5): 1117–1126.
106. Maruoka H, Fujii K, Inoue K, Kido S. Long-term effect of ubiquinol on exercise capacity and the
oxidative stress regulation system in SAMP1 mice. J Phys Ther Sci. 2014. 26 (3): 367–371.
107. Klarod K, Gatterer H, Frontull V, Philippe M, Burtscher M. Effects of short-term antioxidant
supplementation on oxidative stress and exercise performance in the heat and the cold. Int J Physiol
Pathophysiol Pharmacol. 2015. 7 (2): 98–104
108. Vaugoyeau M, Decencière B, Perret S, Karadas F, Meylan S, Biard C. Is oxidative status influenced
by dietary carotenoid and physical activity after moult in the great tit (Parus major)? J Exp Biol. 2015.
218 (Pt 13): 2106–2115.
109. Tsuzuki N, Sasaki N, Kusano K, Endo Y, Torisu S. Oxidative stress markers in Thoroughbred horses
after castration surgery under inhalation anaesthesia. J Equine Sci. 2016. 27 (2): 77–79.
110. Sugita M, Kapoor MP, Nishimura A, Okubo T. Influence of green tea catechins on oxidative stress
metabolites at rest and during exercise in healthy humans. Nutrition. 2016. 32 (3): 321–331.
111. Rich K. Transcutaneous oxygen measurements: implications for nursing. J Vasc Nurs. 2001. 19: 55–
61.
112. Got I. Transcutaneous oxygen pressure (TcPO2): advantages and limitations. Diabetes Metab. 1998.
24: 379–384.
113. Agache P. Transcutaneous oxygen pressure; in Agache P, Humbert P (eds): Measuring the Skin. New
York, Springer. 2004. pp 363–370.
114. Talbot A, Neuman M, Saidel G, Jacobsen E. Dynamic model of oxygen transport for transcutaneous
pO2 analysis. Ann Biomed Eng. 1996. 24: 294–304.
115. Takiwaki H, Nakanishi H, Shono Y, Arase S. The influence of cutaneous factors on the
transcutaneous pO 2 and pCO 2 at various body sites. Br J Dermatol. 1991. 125: 243–247.
116. Stucker M, Struk A, Altmeyer P, Herde M, Baumgartl H, Lubbers DW. The cutaneous uptake of
atmospheric oxygen contributes significantly to the oxygen supply of human dermis and epidermis.
Journal of Physiology. 2002. 538 (3): 985–994.
117. Amuso D, Iorio EL. Proceedings of First Sport Seminar. Tokyo, 2014.
118. Amuso D, Iorio EL. Proceedings of Second Sport Seminar. Tokyo, 2015.
119. Iorio EL. The physiological modulation of oxygen on demand. 2015. Edra Eds. Italy.
3
(Aristotelia chilensis) berry and its major polyphenol delphinidin…
(Aristotelia chilensis) berry and its major polyphenol delphinidin: relevance for skin photoprotection and anti-aging Bacche di Maqui (Aristotelia chilensis) e il principale polifenolo delfinidina in esse contenuto: rilevanza per la foto-protezione della pelle e anti-invecchiamento
Giovanni Scapagninia, MD, PhD, Piero Porcarob, BD, Armando Zarrellib, CD, Najat Youssef, BD, RD e Sergio Davinellia, BD, PhD.
Dipartimento di Scienze della Salute, Università del Molise, Campobasso, Italia.
Consorzio Interuniversitario SannioTech, Piazza San G. Moscati, 82030 Apollosa (BN), Italia.
Dipartimento di Scienze Chimiche, Università Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italia.
International Observatory of Oxidative Stress, Salerno, Italia.
ABSTRACT
Pubblicazioni Scientifiche di Najat Youssef
L’invecchiamento in buona salute è il risultante dell’interazione tra geni, ambiente e stile di vita, in particolare la dieta. I geni regolati dall’alimentazione svolgono un ruolo cruciale nell’insorgenza e nella progressione di diversi disturbi cronici tra cui le malattie della pelle e gli interventi dietetici possono essere utilizzati per mitigare queste malattie ma anche per preservare la salute. La regolazione dei nutrienti dei geni chiave coinvolti nell’invecchiamento può prevenire l’ossidazione e l’infiammazione, riducendo i danni cellulari alle proteine, alle membrane e ai mitocondri. Negli ultimi anni c’è stato un crescente interesse, supportato da un gran numero di studi sperimentali ed epidemiologici, circa gli effetti benefici di alcuni prodotti alimentari comunemente usati, compresi macro e micronutrienti e fitofarmaci dietetici. In particolare, frutta, spezie ed erbe contengono spesso sostanze fenoliche attive dotate di potenti proprietà antiossidanti e chemio-preventive. Tra i polifenoli, le antocianine, una sottofamiglia appartenente alla classe dei flavonoidi, hanno dimostrato di modulare una varietà di pathways biochimiche / di segnalazione coinvolte nella promozione della fisiologia dell’organismo e dello stato generale di salute, compresi gli effetti vasculoprotettivi, il miglioramento del processo cognitivo, l’attività anticancro e fotoprotezione della pelle. Tra le specie di antociani, la delfinidina [2- (3,4,5-triidrossifenil) chromenil-3,5,7-triol] rappresenta il più potente antiossidante. La fonte naturale più ricca conosciuta di delfinidina è la bacca maqui (Aristotelia chilensis), un super-frutto indigeno nel Cile. Recentemente è stato condotto uno studio clinico randomizzato in doppio cieco il quale ha dimostrato la capacità in vivo dei polifenoli maqui di proteggere i lipidi dai danni ossidativi. Questo e altri studi hanno iniziato a fornire una base per considerare l’uso di maqui e di delfinidina nello sviluppo di nuove strategie di intervento nutrizionale per la gestione della salute e contro specifiche malattie associate all’età. In questa review forniremo una panoramica della letteratura attuale sottolineando pathways antiossidanti e anti-infiammatori modulati dalla bacca maqui e le sue componenti polifenoliche, principalmente la delfinidina. Inoltre, ci concentreremo su studi sperimentali che dimostrano che la delfinidina del maqui può avere un impatto positivo sulla salute della pelle.
Parole chiave: Maqui; Aristotelia chilensis; Polifenoli; delfinidina; antiossidanti.
Indirizzo per la corrispondenza
Dr Piero Porcaro. Consorzio Interuniversitario SannioTech, Piazza San G. Moscati, 82030 Apollosa (BN), Italia. Email: piero.porcaro@tecnobios.com.
Conflitto di interessi. NESSUNO.
1. Introduzione
Una corretta alimentazione è un fattore diretto che influenza il benessere, la salute e le condizioni della pelle. Oltre al valore nutrizionale, i nutraceutici e gli alimenti funzionali contengono componenti che promuovono la salute con effetti benefici specifici sulla pelle. La pelle dell’uomo è soggetta a cambiamenti costanti, motivo per cui gli integratori alimentari possono integrare la normale dieta fornendo nutrienti adeguatamente bilanciati. Un numero efficace di micronutrienti sono in grado di contribuire alla prevenzione dei danni UV negli esseri umani e sono disponibili un crescente numero di prove scientifiche che sostengono come i composti derivati dagli alimenti contenenti antiossidanti e attività anti-infiammatorie contribuiscano alla foto-protezione endogena e siano cruciali per il mantenimento della salute della pelle. Le spezie e le erbe contengono spesso sostanze fenoliche attive dotate di potenti proprietà antiossidanti e chemiopreventive (1). Tutti questi composti sembrano avere un numero di bersagli molecolari diversi, che interferiscono con diversi pathway di segnalazione e mostrano un attività pleiotropica su cellule e tessuti. Un possibile meccanismo generale di attività benefica dei polifenoli, si riferisce alla loro capacità di sovraesprimere i geni altamente protettivi inducibili, coinvolti nella risposta allo stress cellulare. Diversi dati dai nostri e da altri laboratori, hanno precedentemente dimostrato che diverse classi di polifenoli, come le antocianine, epicatechine e curcuminoidi, inducono fortemente l’espressione dell’eme-ossigenasi-1 (HO-1) e l’attività nelle cellule della pelle attraverso l’attivazione di eterodimeri del fattore nucleare eritroide 2-fattore 2 correlato (Nrf2) / patway dell’elemento reattivo antiossidante (ARE) (2). Molti studi dimostrano chiaramente che l’attivazione di geni bersaglio Nrf2, e in particolare di HO-1, è fortemente protettiva contro l’infiammazione, il danno ossidativo e la morte cellulare, nella pelle e in diversi tessuti (3). Inoltre, è stato dimostrato che la maggior parte di questi composti inibisce in modo efficiente l’attivazione del fattore nucleare kB (NFkB), il principale regolatore degli eventi pro-infiammatori cellulari (4). Questi doppi pathways interferiscono con l’inibizione dei polifenoli-Nrf2 /attivazione di NFkB, inducono una sovra espressione di antiossidanti endogeni e inibiscono la produzione o l’espressione di mediatori pro-infiammatori tra cui citochine, chemiochine e metalloproteinasi della matrice (Figura 1). Questi studi hanno iniziato a fornire una base per considerare l’uso di tali polifenoli nello sviluppo di nuove strategie interventistiche nutrizionali per la gestione della salute della pelle e contro specifiche malattie associate all’età, tra cui la fotocarcinogenesi. In questa review è stato valutato il valore nutrizionale di un super frutto, le bacche di Aristotelia chilensis ([Molina], Stuntz), noto anche come maqui (Figura 2), e i suoi effetti promettenti contro l’invecchiamento della pelle e le malattie infiammatorie della pelle, con una particolare attenzione alla delfinidina [2- (3,4,5-triidrossifenil) chromenil-3,5,7-triol], un polifenolo specifico altamente contenuto in questo frutto (Figura 3).
2. Maqui: dall’uso tradizionale alle caratteristiche fitochimiche.
Maqui appartiene alla famiglia delle Elaeocarpaceae, con 10 generi e circa 400 specie, è una pianta originaria delle Valdiviane foreste pluviali temperate del Cile. Le bacche di Maqui, molto simili ai mirtilli, sono ricche di antociani, in particolare la delfinidina, antiossidanti responsabili della loro colorazione viola e, con ogni probabilità, di molte delle proprietà medicinali ad essa attribuite. Le qualità terapeutiche di Maqui sono note da secoli ai popoli indigeni Mapuche che hanno vissuto tradizionalmente nella parte meridionale del Cile. Secondo i conquistatori, i guerrieri Mapuche mangiavano pochissimo cibo solido e bevevano una bevanda fresca e fermentata chiamata “chicha” a base di bacche di Maqui che avrebbe potuto contribuire alla forza e alla resistenza mostrate dai guerrieri. Gli indiani Mapuche hanno usato in medicina foglie di bacche, gambi, frutti e vino di maqui per migliaia di anni. Tradizionalmente, si ritiene che guarisca le ferite, allevia il mal di gola e sia analgesico. Oggi, la bacca di Maqui è considerata un “super frutto” grazie alle sue maggiori proprietà antiossidanti. Attualmente le bacche di Maqui sono commercializzate sotto forma di succhi e infusi, e anche gli integratori derivano dal Maqui. Lo screening fitochimico dell’estratto di Maqui (frutti o foglie) ha rivelato la presenza di antociani e altri flavonoidi, alcaloidi, derivati dell’acido cinnamico e benzoico, altre molecole bioattive ed elementi minerali. Esistono diversi reports riguardanti la composizione chimica degli antociani di A. chilensis che indicano un contenuto di antocianina relativamente alto (~ 135 mg per 100 g di peso fresco). Gli antociani sono glicosidi di antocianidine e sono ampiamente distribuiti in frutti e bacche colorati. Gli antociani sono pigmenti idrosolubili e non tossici, suddivisi in cinque gruppi principali: malvidina, delfinidina, petunidina, cianidina, peonidina. La delfinidina, che contiene 3 idrossilazioni nell’anello B, possiede la più alta attività antiossidante. Il contenuto totale di antocianine negli estratti di bacche di maqui (MBE) è~ 35%, di cui l’80 % è rappresentato dalla delfinidina e la malvidina, petunidina, cianidina ed i derivati della peonidina sono la restante parte (5). Recentemente Delphinol® (marchio di proprietà di MNL Chile) è stato introdotto nel mercato europeo e giapponese degli integratori (5), un estratto standardizzato di bacche di Maqui ad alto contenuto di polifenoli, con ≥ 25% di delfinidina.
3. Attività biologiche di Maqui
Riguardo l’attività biologica, il Maqui mostra buone risposte in termini di attività antiossidante, anti-infiammatoria, anti-diabetica, anti- foto invecchiamento, ecc. L’ampia gamma di proprietà dei frutti indica che molteplici meccanismi sono responsabili delle sue proprietà curative biologiche, legate al loro caratteristico contenuto fenolico, e suggerendo un potenziale molto interessante per il fotoinvecchiamento della pelle e la foto carcinogenesi.
Attività antiossidante
Il potenziale antiossidante in vitro delle bacche di Maqui è stato ampiamente esplorato. I frutti di Maqui rappresentano una ricca fonte di composti antiossidanti, dal momento che mostrano un’elevata azione rispetto al saggio di decolorazione DPPH. Ciò è dovuto al loro alto contenuto di antociani come dimostrato dalla correlazione positiva e diretta tra DPPH ed il contenuto totale di antociani (TAC). I frutti di Maqui mostrano valori di capacità di assorbanza dei radicali dell’ossigeno (ORAC) superiori a 100 diversi tipi di alimenti, tra cui frutta, verdura, noci, frutta secca, spezie e cereali (20 volte più forte del limone, 3,5 volte più forte del ribes nero e 2,9 volte più forte di mirtillo selvatico). L’effetto degli antociani sulla perossidazione lipidica è stato esaminato in vitro (utilizzando il modello a doppio strato lipidico della membrana artificiale). I risultati hanno mostrato che gli antociani inibiscono fortemente la perossidazione lipidica dello ione Fe2 +, in particolare la delfinidina dimostra un potente effetto inibitorio. Il perossido di idrogeno è il perossido più semplice con una potente capacità ossidante, quindi una specie di ossigeno altamente reattivo. L’effetto degli antociani sul perossido di idrogeno è stato esaminato sui lipidi di membrana (usando il cervello di ratto omogeneizzato). La delfinidina mostra il più forte effetto inibitorio sulla perossidazione dell’idrogeno dei lipidi di membrana con il più basso ID50. Gli effetti antiossidanti di A. chilensis, con il suo contenuto eccezionalmente alto di fenoli, sono stati studiati in diversi modelli cellulari. È stato dimostrato che l’estratto di Maqui protegge sia dall’ossidazione delle LDL che le cellule endoteliali dallo stress ossidativo intracellulare (6), suggerendo che potrebbe avere proprietà anti-aterogene (7), essendo l’aterosclerosi una possibile conseguenza dello stress ossidativo sul colesterolo LDL nella parete vascolare. L’ossidazione delle LDL supporta la formazione di cellule schiumose e rappresenta un potente induttore di molecole infiammatorie, che porta all’apoptosi delle cellule endoteliali vascolari, quindi alla progressione dell’aterosclerosi. La maggior parte degli studi in vitro e in vivo condotti finora ha attribuito l’effetto protettivo dei polifenoli bioattivi alla loro reattività chimica nei confronti dei radicali liberi e alla loro capacità di prevenire l’ossidazione di importanti componenti intracellulari. Tuttavia, le osservazioni dei nostri e di altri laboratori rivelano un potenziale aspetto nuovo nel modo di agire dei polifenoli, cioè l’attivazione del fattore di trascrizione Nrf2, e con ciò, la sovraregolazione di geni inducibili caratterizzati da un elemento antiossidante reattivo (ARE) nella loro regione del promotore. Dati senza precedenti del nostro laboratorio hanno dimostrato che bacche di Maqui estraggono Delphinol®, inducono fortemente l’espressione e l’attività dell’eme-ossigenasi-1 (HO-1) nelle cellule endoteliali attraverso l’attivazione del pathway dell’Nrf2 (dati non pubblicati). Molti studi dimostrano chiaramente che l’attivazione di geni bersaglio Nrf2, e in particolare di HO-1, è fortemente protettiva contro l’infiammazione, il danno ossidativo e la morte cellulare. L’attività antiossidante è stata anche proposta come uno dei possibili meccanismi della forte attività neuroprotettiva delle antocianine Maqui, nei neuroni coltivati ippocampali esposti a oligomeri solubili di beta-amiloide 1-40 (8). Studi in vivo hanno anche confermato la capacità della bacca Maqui di ridurre lo stress ossidativo in diversi tessuti. Gli estratti di bacche di Maqui somministrati oralmente (MBE) sopprimono la formazione di specie reattive dell’ossigeno dal tessuto ghiandolare lacrimale, preservano e ripristinano la capacità di secrezione lacrimale nell’occhio secco. Questo effetto è associato alla modulazione del sistema secretorio della ghiandola lacrimale stimolata da MBE contenente l’antocianina delfinidina 3,5-O-diglucoside (9). Recentemente sono stati studiati gli effetti della somministrazione orale dell’estratto di Berry di Maqui, titolato in delfinidina, Delphinol ®, sulla perossidazione lipidica in soggetti fumatori sani, di età compresa tra 50 e 70 anni (10). È stato condotto uno studio randomizzato controllato con placebo in doppio cieco (n = 43) durante il quale gli antociani di Maqui Berry (~ 300 mg / die) o il placebo sono stati somministrati per via orale a 43 soggetti fumatori sani una volta al giorno per 4 settimane. I parametri biochimici e ematologici di base sono stati determinati durante lo studio. Il danno ossidativo lipidico è stato valutato misurando le LDL ossidate circolanti nel plasma (dosaggio immunoenzimatico), gli isoprostani totali urinari-F2 (HPLC con tandem MS). L’efficacia è stata definita come il cambiamento rispetto al basale e dopo somministrazione orale di antociani di bacche, gli indicatori di stress ossidativo nel gruppo supplementato erano migliori rispetto al placebo. In effetti, è stata osservata una riduzione statisticamente significativa delle LDL ossidate e degli isoprostani totali di classe F2.
Effetto anti-infiammatorio
L’effetto antinfiammatorio degli antociani è stato valutato usando cellule macrofagi del topo (RAW 264.7). In seguito all’aggiunta di LPS (lipopolisaccaridi, induttore dell’infiammazione) alle cellule dei macrofagi RAW264.7, l’espressione della cicloossigenasi-2 (COX-2) è marcatamente sovraregolata in risposta all’attivazione di cascate infiammatorie. Tuttavia, nel campione trattato con delfinidina, l’inibizione della COX-2 è inibita. Nel frattempo, l’espressione di COX-1 non è influenzata indicando che la delfinidina è un agente anti-infiammatorio selettivo COX-2. COX-1 è importante nel mantenimento in buona salute delle funzioni fisiologiche. Dopo irraggiamento UVB sulla pelle, la cascata infiammatoria viene attivata con up-regulation di COX-2 e rilascio di prostaglandine pro-infiammatorie E2 (PGE2) (11, 12). Gli estratti di diclorometano e metanolo, sia delle foglie che dei frutti di Aristotelia chilensis, mostrano effetti simili contro l’infiammazione indotta da 12-desossiforbo-13-decanoato (TPA) (rispettivamente 63,9 e 66,0%,). D’altra parte, l’estratto acquoso mostra un alto effetto (56,2%) contro l’infiammazione indotta da acido arachidonico, più della nimesulide di riferimento, raggiungendo quasi il doppio dell’effetto all’esposizione agli estratti di esano e diclorometano (rispettivamente 30,0 e 31,5%,). L’effetto antinfiammatorio topico dell’estratto di metanolo (20%) non è significativo. Test eseguiti con una miscela di alcaloidi estratti dalla stessa pianta consentono di escludere la possibilità che questi siano la causa di tali effetti (13, 14). L’effetto antinfiammatorio topico nei dosaggi di TPA e acido arachidonico e l’attività analgesica dell’estratto di diclorometano possono essere in parte causati dalla miscela dei triterpenoidi pentaciclici, dell’acido ursolico e della friedelin, con quercetina 5,3′-O-dimetil etere. Questo flavonoide ha una maggiore attività antinfiammatoria rispetto al controllo positivo con l’acido mefenamico. I report suggeriscono che l’attività antinfiammatoria topica degli estratti vegetali è dovuta alla presenza di questi composti, principalmente all’alto contenuto di acido ursolico. La quercetina 3-O-b-D -glucoside e il kaempferolo nell’estratto di metanolo possono essere responsabili dell’inibizione sia dell’infiammazione topica TPA-indotta che dell’attività analgesica. Le analisi in vivo mostrano che il kaempferol, in particolare, ha una significativa attività antinfiammatoria e analgesica dose-dipendente. Gli estratti di Aristotelia chilensis si sono rivelati più efficaci nell’alleviare il dolore rispetto all’infiammazione in tutti i modelli farmacologici nei topi, più potenti del massimo effetto del farmaco di riferimento naproxen sodico (54%). Considerando la buona biodisponibilità e l’efficacia nutrizionale umana dimostrata negli studi clinici (15), dovremmo considerare l’estratto di Maqui, con alti livelli di delfinidina, un utile complemento dietetico promettente per contrastare le alterazioni dello stato di ossidoriduzione cellulare, in diverse condizioni fisiologiche e patologiche, incluso invecchiamento cutaneo e foto carcinogenesi.
4. Delfinidina per il mantenimento della salute della pelle
L’esposizione alle radiazioni solari UV, in particolare della sua componente UVB, causa molti effetti avversi nell’uomo, che includono eritema, iperpigmentazione, iperplasia, soppressione immunitaria, fototerapia e cancro della pelle. L’esposizione UVB provoca alle cellule della pelle diversi tipi di danni al DNA, come la formazione di dimeri di ciclobutano pirimidina (CPDs), pirimidina (6-4) pirimidone. Questi effetti della radiazione UVB con conseguente DNA danneggiato possono dare inizio alla fotocarcinogenesi. Studi sperimentali ed epidemiologici hanno suggerito che i polifenoli proteggono la pelle dagli effetti avversi delle radiazioni UV e hanno acquisito una notevole interesse come agenti foto chemiopreventivi per uso umano. Tra i fitochimici con attività potente antiossidante / antinfiammatoria, la delpinidina merita particolare considerazione. Le ridotte dimensioni molecolari della delfinidina, l’elevata biodisponibilità e la buona distribuzione del tessuto cutaneo fanno di questa antocianidina un promettente candidato per la protezione dell’invecchiamento cutaneo (16). Le prime prove per la capacità della delfinidina di proteggere le cellule della pelle dalla mediazione UVB, sono state dimostrate su un modello in vitro utilizzando cheratinociti umani coltivati (cellule HaCaT) (17). Questo studio ha dimostrato che il pretrattamento delle cellule con delfinidina ha inibito l’apoptosi mediata da UVB come determinato dalla citometria a flusso, dalla microscopia confocale e dal clivaggio di PARP. Il trattamento delle cellule HaCaT con delfinidina prima dell’irradiazione UVB ha comportato una riduzione significativa del Bax con un concomitante aumento di Bcl-2 e con conseguente spostamento del rapporto Bax / Bcl-2 che non favorisce l’apoptosi. Inoltre, è stato scoperto che l’applicazione topica della delfinidina (sia pre-trattamento che post-trattamento) ha inibito l’apoptosi indotta da UVB nella pelle di topo glabro SKH-1. Un altro studio, condotto su modelli sia in vitro che in vivo, ha evidenziato i forti effetti antinfiammatori della delfinidina contro l’infiammazione indotta da UVB (18). Il trattamento delle cellule epidermiche di topo JB6 P ++ con delfinidina ha indotto l’espressione di COX-2 e la produzione di PGE2, e questo è stato anche mostrato in vivo sulla pelle di topo esposta agli UVB. Questa attività è stata associata alla soppressione delle attività trascrizionali AP-1 e NF-KB e alla fosforilazione di JNKs, p38 e Akt. Lo studio ha anche rivelato che la delfinidina si lega direttamente con MAPKK4 e PI3K in modo competitivo all’adenosina trifosfato. In un altro studio, il trattamento con delfinidina ha significativamente inibito l’espressione di MMP-1 indotta da UVB in fibroblasti primari dermici umani coltivati (HDF) e ha inibito significativamente la produzione di ROS indotta dai raggi UVB e l’attività di NOX (19). La delfinidina ha anche dimostrato di indurre differenziazione nei cheratinociti epidermici umani sia nelle culture sommerse che nel modello 3D di EEs risultante nella maggiore espressione della caspasi-14, una proteasi strettamente regolata durante la cheratinizzazione e down-regolata in disturbi della pelle iperproliferativi inclusa la psoriasi (20). In un altro studio, l’applicazione della delfinidina a topi con pelle sfaldata ha cancellato le caratteristiche istologiche delle lesioni psoriasiforme e ha ridotto notevolmente l’infiltrazione di cellule infiammatorie come neutrofili e macrofagi (21). Di conseguenza, con le precedenti evidenze, è stato dimostrato l’effetto positivo della bacca di Maqui, contenente elevate quantità di delfinidina. L’estratto di Maqui è stato sperimentato in cellule di fibroblasti esposti all’irradiazione UVB. I risultati hanno mostrato che il Maqui inibisce efficacemente il danno cellulare indotto dai raggi UVB delle cellule di fibroblasti. Inoltre, l’upregolazione del gene MMP-1 da parte dei raggi UV, è attivamente downregolata dal Maqui, che offre una protezione alla degradazione del collagene (22). Questi effetti biologici promettenti, associati al costo relativamente basso e alla tossicità degli agenti naturali, rendono il maqui e la delfinidina, agenti promettenti per il trattamento del fotoinvecchiamento e anche disturbi infiammatori della pelle come la psoriasi (23).
5. Conclusioni.
Prove crescenti dimostrano che la nutrizione attraverso l’assunzione di frutta e verdura può contribuire a prevenire e trattare quasi tutte le malattie incluso l’invecchiamento precoce. Infatti frutta e verdura contengono diverse molecole attive come le antocianine che sono in grado di comporre direttamente il DNA con meccanismi genetici e / o epigenetici. Su questo sfondo la delfinidina della bacca Maqui (Aristotelia chilensis), un super-frutto indigeno nel Cile, presenta potenti proprietà antiossidanti e antinfiammatorie sia in vitro che in vivo che possono essere molto utili in medicina estetica e in dermatologia.
RIFERIMENTI
1. Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease Oxid Med Cell Longev. 2009. 2 (5): 270–278.
2. Scapagnini G, Vasto S, Abraham NG, Caruso C, Zella D, et Al. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol. 2011. 44 (2): 192–201.
3. Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Medicin Res Rev. 2012. 32 (4): 687–726.
4. Upadhyay S, Dixit M. Role of polyphenols and other phytochemicals on molecular signaling. Oxidative Medicine and Cellular Longevity. 2015. 2015: 504253.
5. Watson RR, Schonlau F. Nutraceutical and antioxidant effects of a delphinidin-rich maqui berry extract delphinol: a review. Minerva Cardioangiol. 2015. 63: 1–12.
6. Miranda-Rottmann S, Aspillaga AA, Perez DD, Vasquez L, Martinez ALF, Leighton F. Juice and phenolic fractions of the berry Aristotelia chilensis inhibit LDL oxidation in vitro and protect human endothelial cells against oxidative stress. J Agric Food Chem. 2002. 50 (26): 7542–7547.
7. Cespedes CL, El-Hafidi M, Pavon N, Alarcon J. Antioxidant and cardioprotective activities of phenolic extracts from fruits of Chilean blackberry Aristotelia chilensis (Elaeocarpaceae), Maqui. Food Chemistry. 2008. 107 (2): 820–829.
8. Fuentealba J, Dibarrart A, Saez-Orellana F, Fuentes-Fuentes MC, Oyanedel CN, et Al. Synaptic silencing and plasma membrane dyshomeostasis induced by amyloid-β peptide are prevented by Aristotelia chilensis enriched extract. J Alzheimers Dis. 2012. 31: 879–889.
9. Nakamura, Shigeru; Tanaka, Junji; Imada, Toshihiro; Shimoda, Hiroshi; Tsubota, Kazuo. Delphinidin 3,5-O-diglucoside, a constituent of the maqui berry (Aristotelia chilensis) anthocyanin, restores tear secretion in a rat dry eye model. Journal of Functional Foods. 2014. 10: 346–354.
10. Scapagnini G, Davinelli S, Cardinale G, Pisantu A, Calabrese V. Effect of anthocyanin supplementation on oxidative stress biomarkers: evidence from a randomized trial. J Nutr Health Aging. 2014. 18 (6): 645.
11. Wang JZ, Yousef GG, Rogers RB, Gonzalez de Mejia E, et AL. Maqui berry (Aristotelia chilensis) juices fermented with yeasts: effects on phenolic composition, antioxidant capacity, and iNOS and COX-2 protein expression. ACS Symposium Series. 2012. 6: 95–116.
12. Ojeda J Jara E, Molina L, Parada F, Burgos R, Hidalgo MA. Effects of Aristotelia chilensis berry juice on cyclooxygenase 2 expression, NF-κB, NFAT, ERK1/2 and PI3K/Akt activation in colon cancer cells. Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas. 2011. 10 (6): 543–552.
13. Munoz O, Christen P, Cretton S, Backhouse N, Torres V, et Al. Chemical study and anti-inflammatory, analgesic and antioxidant activities of the leaves of Aristotelia chilensis (Mol.) Stuntz, Elaeocarpaceae. Journal of Pharmacy and Pharmacology. 2011. 63 (6): 849–859.
14. Cespedes CL, Alarcon J, Avila JG, Nieto A. Anti-inflammatory activity of Aristotelia chilensis Molecular (Stuntz) (Elaeocarpaceae). Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromaticas. 2010. 9 (2): 127–135.
15. Hidalgo J, Flores C, Hidalgo MA, Perez M, YañezA, Quiñones L et al. Delphinol® standardized maqui berry extract reduces postprandial blood glucose in¬crease in individuals with impaired glucose regulation by novel mechanism of sodium glucose cotransporter inhibition. Panminerva Med. 2014. 56 (2 Suppl 3): 1–7.
16. Afaq F, Katiyar SK. Polyphenols: skin photoprotection and inhibition of photocarcinogenesis. Mini Rev Med Chem. 2011. 11 (14): 1200–1215.
17. Afaq F, Syed DN, Malik A, Hadi N, SarfarazS, et Al. Delphinidin, an anthocyanidin in pigment¬ed fruits and vegetables, protects human HaCaT ke¬ratinocytes and mouse skin against UVB-mediated oxidative stress and apoptosis. J Invest Dermatol. 2007. 127: 222–232.
18. Kwon JY, Lee KW, Kim JE, Jung SK, Kang NJ, et Al. Delphinidin suppresses ultraviolet B-in¬duced cyclooxygenases-2 expression through inhi¬bition of MAPKK4 and PI-3 kinase. Carcinogenesis. 2009. 30: 1932–1940.
19. Lim TG, Jung SK, Kim JE, Kim Y, Lee HJ, et Al. NADPH oxidase is a novel target of delphinidin for the inhibition of UVB-induced MMP-1 expression in human dermal fibroblasts. Exp Dermatol. 2013. 22 (6): 428–430.
20. Chamcheu JC, Afaq F, Syed DN, Siddiqui IA, Adhami VM, et Al. Delphinidin, a dietary antioxidant, induces human epidermal keratinocyte differentiation but not apoptosis: studies in submerged and three-dimensional epidermal equivalent models. Exp Dermatol. 2013. 22 (5): 342–348.
21. Pal HC, Chamcheu JC, Adhami VM, Wood GS, Elmets CA, et Al. Topical application of delphinidin reduces psoriasiform lesions in the flaky skin mouse model by inducing epidermal differentiation and inhibiting inflammation. Br J Dermatol. 2015. 172 (2): 354–364.
22. Shimoda H, Murai H. UV-induced fibroblast damage inhibitors containing maqui berry extract. Jpn. Kokai Tokkyo Koho. 2013. JP 2013234141 A 20131121.
23. Chamcheu JC, Pal HC, Siddiqui IA, Adhami VM, Ayehunie S, et Al. Prodifferentiation, anti-inflammatory and antiproliferative effects of delphinidin, a dietary anthocyanidin, in a full-thickness three-dimensional reconstituted human skin model of psoriasis. Skin Pharmacol Physiol. 2015. 28 (4): 177–188.
4
Cellulite: ultimi aggiornamenti
Determinazione dello stress ossidativo ed analisi istologica nella valutazione della cellulite: : luci e ombre verso un approccio multidisciplinare.
Introduzione. La cellulite è un disordine localizzato che interessa principalmente il tessuto sottocutaneo delle aree trocanteriche gluteo-femorali e si manifesta classicamente con un aspetto a buccia d’arancia o imbottito, responsabile di un’alterazione della forma corporea. Sebbene la sua patogenesi non sia chiara, non si può escludere il possibile ruolo dello squilibrio tra i radicali liberi e gli antiossidanti (cioè lo stress ossidativo). Sfortunatamente i patologi non hanno un parere unanime circa le caratteristiche istologiche e questo può influenzare la possibilità di trattare tale disturbo che dovrebbe essere affrontato attraverso una strategia multidisciplinare. Obiettivo. Lo scopo di questo studio è di valutare i fattori di rischio, le caratteristiche cliniche, i risultati strumentali e di laboratorio (specialmente lo stress ossidativo) in un gruppo di pazienti affetti da cellulite e valutare le possibili relazioni tra tali risultati e il quadro istologico del tessuto gluteo cutaneo/sottocutaneo – aree affette da trocanteri femorali, ottenute mediante biopsie seriali.
Pubblicazioni Scientifiche di Najat Youssef
Materiali e metodi. Si è trattato di una sperimentazione clinica osservazionale su 60 donne volontarie apparentemente sane e affette da cellulite. Tutte le donne reclutate sono state sottoposte ad un esame clinico classico seguito da una valutazione strumentale (cioè termografia, videocapillaroscopia ottica, esame ad ultrasuoni dei tessuti sottocutanei, color doppler etc), analisi di laboratorio (test di routine più valutazione dello stress ossidativo su campioni di sangue mediante il d-ROMs test e dosaggio del coenzima Q10), accompagnato da biopsie seriali delle aree interessate. Risultati. L’esame clinico e la valutazione strumentale hanno confermato la diagnosi di cellulite nelle sue diverse fasi. Le biopsie seriali hanno dimostrato che la cellulite danneggia non solo il tessuto sottocutaneo, ma anche l’epidermide e il derma, tenendo conto di 5 diversi modelli istologici che possono essere presenti nello stesso soggetto contemporaneamente. L’unico parametro anormale di laboratorio al di fuori dell’intervallo era lo stress ossidativo, misurato con il test del d-ROMs (477,38 ± 69,26 A.U, intervallo normale 250-300 A.U.). Mediante l’analisi di regressione lineare i valori del test di d-ROM hanno mostrato una relazione positiva con età e BMI e una relazione negativa con i livelli plasmatici di CoQ10, idratazione ed elasticità della pelle, tutti statisticamente significativi (p> 0,05). Discussione. Questo studio dimostra che la cellulite è una malattia che colpisce non solo il grasso sottocutaneo ma anche la pelle con diverso grado di danno, correlati alla classificazione clinica delle malattie secondo Curry. In accordo con precedenti studi, lo stress ossidativo è aumentato soprattutto nelle persone anziane con BMI elevato ed è associato ad anomalie cutanee, suggerendo quindi che uno squilibrio tra i radicali liberi e gli antiossidanti può essere non solo un fattore patogeno ma anche un ponte tra le alterazioni locali e sistemiche che interessano la cellulite. Conclusioni. La cellulite è una malattia locale con un impatto sistemico che può essere mediato dallo stress ossidativo. Tale osservazione dovrebbe aprire nuove strade specifiche per il suo trattamento (ad esempio cosmeceutici / nutraceutici antiossidanti). Ulteriori studi dovranno definire in futuro le relazioni tra le caratteristiche cliniche e istologiche di questa malattia.
AUTORI. Domenico Amuso MD (1), Eugenio Luigi Iorio MD, PhD (2), Najat Youssef BD, RD (2), Luca Bonetti MD (3), Roberto Amore MD (1), Ferdinando Terranova MD (4), Vincenza Leonardi MD (1).
(1) Università di Palermo, Palermo (Italia). (2) Osservatorio internazionale dello stress ossidativo, Salerno (Italia). (3) Policlinico di Modena, Modena (Italia). (4) International School of Aesthetic Medicine, Roma (Italia).